Fig. 1

By using Deby formula, the loss factor \epsilon{"} at 2.45 GHz are extrapolated from experimental values at 3 GHz, [11], [12].  Fig. 1 shows a loss factor variation of about one order of magnitude in the temperature range 0 < T < 100° C.

Table 1

This table shows the temperature variation of loss factor at 2.45 GHz with its fitted values. A good fit to these data in the temperature range 25 < T < 75° C is given by the equation :

    \[ \epsilon{"} {\sim }\frac{230}{T} \]

    \[T \]

0 5 10 15 20 25 30 35 40 50 60 70 80 90 100

    \[\epsilon^"\]

20.7 17.2 14.7 12.6 10.8 8.9 7.7 6.7 6.0 4.5 3.6 2.8 2.3 1.9 1.6

    \[\frac{230}{T}\]

46 23 15.3 11.5 9.2 7.6 6.5 5.7 4.6 3.8 3.2 2.8 2.5 2.3

However the fit does not hold in the temperature range 75 < T < 100° C, nor does it hold if the temperature of water is below ambiant temperature.

Table 2

In the temperature range 75 < T < 100° C the fit can be written as:

    \[ \epsilon{"} {\sim }\frac{190}{T} \]

    \[T \]

70 80 90 100

    \[\epsilon^"\]

2.8 2.3 1.9 1.6

    \[\frac{190}{T}\]

2.7 2.4 2.1 1.9

Laisser un commentaire

Vous pouvez utiliser ces balises: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>